

Technical Note

This guide contains information about how the refactorings related to the port of the common migFx libraries from .NET Framework to netstandard 2.0.

The document also includes the refactorings related to the new implementation of Generation, Debug and Deploy in the migFx Visual Studio extension

Preparation

To work on the refactoring described in this document, your workstation must meet these requirements.

WIX
All installer projects in the MigFx Visual Studio solution have now been ported to WIX. Please ensure that you have the WIX Toolset installed (Downloads (wixtoolset.org)) and

the WIX Extension added to Visual Studio.

Net 5.0
Please ensure that minimum Microsoft NET SDK 5.0.301 for Visual Studio is installed (Download .NET 5.0 (Linux, macOS, and Windows) (microsoft.com))

https://wixtoolset.org/releases/
https://dotnet.microsoft.com/download/dotnet/5.0

2

Visual Studio Deploy & Debug

As part of the new deploy and debug mechanism via the Director in the MigFx Visual Studio extension manual refactorings must be applied to the MigFx.config files in your

Visual Studio solution. In addition, manual updates must be carried out in the Master database.

MigFx.config files
Firstly, all MigFx.config files in Visual Studio solutions containing MigFx Engine projects must be renamed to MigFx.manifest.

Secondly, the content of the manifest files must be refactored to account for the revised Debug and Deploy mechanism and for the new format of the command line parameter

for the code generator.

Below a sample file the showing the file content before refactoring.

<?xml version="1.0" encoding="utf-8"?>

<Config>

 <Deploy name="System Test" type="xcopy" deployPath="D:\MigFx\Runtime\Engine\Workshop"/>

 <Deploy name="Integration Test" type="install" deployPath="D:\MigFx\Runtime\Engine\Workshop\Installer" server="."/>

 <ProjectType type="Source" xcopyDeployFolder="Source">

 <PublishedXml>Workshop.SourceEngineCustom\PublishedSource.xml</PublishedXml>

 <Generate>

 <Cmd name ="MigFx Source">

 <Generator>"C:\Program Files (x86)\HoppTech\MigFx.EngineFramework\1.0\Source.EngineGenerator.exe"</Generator>

 <Arguments>/abstract=false /DeveloperMode /verbose /operation:GenerateEngine /projectName:Workshop

/input:"Workshop.SourceEngineCustom\PublishedSource.xml" /output:.</Arguments>

 </Cmd>

 </Generate>

 <Project name="Workshop.SourceEngineCustom" checkOutProjectFile="true" xcopyDeploy="true" buildOrder="1">

 <Folder localPath="_Generated" />

 </Project>

 <Project name="Workshop.SourceEngineGenerated" checkOutProjectFile="true" buildOrder="0">

 <Folder localPath="" />

 </Project>

 <SetupProject>Workshop.SourceSetup</SetupProject>

 </ProjectType>

 <ProjectType type="Target" xcopyDeployFolder="Target">

 <PublishedXml>Workshop.TargetEngine\PublishedTarget.xml</PublishedXml>

 <Generate>

 <Cmd name ="MigFx Target">

 <Generator>"C:\Program Files (x86)\HoppTech\MigFx.EngineFramework\1.0\Target.EngineGenerator.exe"</Generator>

 <Arguments>-V:true -publishedXml:"Workshop.TargetEngine\PublishedTarget.xml" -output:"Workshop.TargetEngine_Generated"</Arguments>

3

 </Cmd>

 </Generate>

 <Project name="Workshop.TargetEngine" checkOutProjectFile="false" xcopyDeploy="true">

 <Folder localPath="_Generated" />

 </Project>

 <SetupProject>Workshop.TargetSetup</SetupProject>

 </ProjectType>

</Config>

And here the same file after refactoring.

<?xml version="1.0" encoding="utf-8"?>

<Manifest>

 <ProjectType type="Source">

 <PublishedXml>Workshop.SourceEngineCustom\PublishedSource.xml</PublishedXml>

 <Generate>

 <Cmd name ="MigFx Source">

 <FileName>SourceEngineGenerator</FileName>

 <Arguments>--verbose --developermode --projectName Workshop --input "Workshop.SourceEngineCustom\PublishedSource.xml" --output .</Arguments>

 </Cmd>

 </Generate>

 <Project name="Workshop.SourceEngineCustom" checkOutProjectFile="true" deploy="true" buildOrder="1">

 <Folder localPath="_Generated" />

 </Project>

 <Project name="Workshop.SourceEngineGenerated" checkOutProjectFile="true" buildOrder="0">

 <Folder localPath="" />

 </Project>

 </ProjectType>

 <ProjectType type="Target">

 <PublishedXml>Workshop.TargetEngine\PublishedTarget.xml</PublishedXml>

 <Generate>

 <Cmd name ="MigFx Target">

 <FileName>TargetEngineGenerator</FileName>

 <Arguments>--verbose --publishedXml "Workshop.TargetEngine\PublishedTarget.xml" --output "Workshop.TargetEngine_Generated"</Arguments>

 </Cmd>

 </Generate>

 <Project name="Workshop.TargetEngine" checkOutProjectFile="false" deploy="true">

 <Folder localPath="_Generated" />

 </Project>

 </ProjectType>

</Manifest>

4

The list of refactorings to do is:

1. Rename root node from Config to Manifest

2. Remove all Deploy nodes

3. Remove the xcopyDeployFolder attribute from all ProjectType nodes

4. Change the name of all ProjectType/Generate/Cmd/Generator nodes to FileName

5. For the content of the FileName nodes referring the Source- and Target EngineGenerator, remove the preceding full path – leaving only the executeable filename itself

(the install of the Engine Framework adds the path to the executables to the PATH environment variable for the machine)

a. FileName should be TargetEngineGenerator and SourceEngineGenerator, respectively

6. The content of the ProjectType/Generate/Cmd/Arguments nodes must be updated to follow the option naming of the new netstandard CommandLineParser using by

the ported engine generators

a. Replace the preceding / character before all options with -- (2 dashes)

b. Replace any : (colon) or = (equal) characters between option names and values with a space

c. For the Source Engine Generator

i. Remove the operation option (GenerateEngine)

7. Remove all xcopyDeploy=”true” attributes from ProjectType/Project nodes

8. Add a deploy="true" attribute to the TargetEngine Project node

9. Add a deploy="true" attribute to the SourceEngineCustom Project node

10. Remove any ProjectType/SetupProject nodes

Master Database
When deploying through the Director, the VsExtension will read the id of the Studio Map project from the header/projectId element in the published xml file and use this to

identify the engine in the Master Database.

5

[mig_director].[Engine]

As a consequence, the EngineID in the [mig_director].[Engine] table must be manually updated to contain the actual project id of the corresponding map in Studio. The id can be

found either in the published xml file (as mentioned above) or in Studio on the Settings tab of the root node in the Project Explorer View

[mig_director].[Project]

The [mig_director].[Project] table must be manually updated and the SourceEngineID and TargetEngineID columns updated to the corresponding, new values in the

[mig_director].[Engine] table

Installation

MigFx version 1.7 no longer installs the public interface libraries in GAC. Instead, the libraries are installed in a local folder, from where they must be references by Souce- and

Target Engine projects as well as any on-premises MigFx extensions.

By default, the libraries are installed to C:\Program Files\HoppTech\migFx\Libraries.

Only install the MigFx.Libraries on workstations where Visual Studio is used for MigFx Engine generation and deployment and/or MigFx Extension development.

OBS: It is not necessary to install the MigFx.Libraries on Master or Migration servers.

To ensure a clean install, it is recommended to

1. Stop all Tracks

2. Stop the Director Agent Service

3. Stop all MigFx app pools in IIS

4. Uninstall the MigFx Visual Studio Extension

6

5. Close all instances of Visual Studio

6. Close all instances of migFx Studio and migFx Director

7. Uninstall all MigFx components and on-premises extensions including Tracker, Director Client and AuthService

8. Ensure that all MigFx libraries are removed from GAC and manually delete any that are not

9. Install the MigFx.Libraries and perform all refactoring as described below

10. Reinstall all MigFx components and on-premises extensions

Installing the Director Agent service
The installer no longer prompts for the credentials for the Director Agent. Instead, set the credentials after install using the Services.msc admin console.

Because of the port to Net 5.0, the config file for the Agent Service in the install folder has changed to MigFx.Agent.dll.config. Please update this file as appropriate.

Web.config files
The newly installed web config files for Tracker and the Director web services contains important assembly redirection information. If you have any saved copies of web config

files, please update the new config files from your copies instead of replacing them.

7

Engine projects

Firstly, if you are using Nuget in any projects, it is recommended to migrate from the (obsolete) packages.config file to the new PackageReference element in the csproj file. This

is easily done by right-clicking the packages.config files in Visual Studio and choose Migrate packages.config to PackageReference. Be aware that the migration tool stores

migration an html report in subfolder in the solution root. You may want to clean that up before committing to Source Control.

You may find it easiest to manually edit the csproj files to exchange the old MigFx references with the new ones.

For engine projects that reference the EntityFramework (most should), you can choose either to reference the 2 EntityFramework libraries installed with MigFx.Libraries.

However, if possible, it is recommended that you use the EntityFramework Nuget package instead:

Or, as PackageReference in the csproj file:

 <PackageReference Include="EntityFramework">

 <Version>6.4.4</Version>

 </PackageReference>

Important
All projects must be updated to minimum target .NET Framework 4.7.2. Any project targeting earlier .NET Framework versions will not be able to reference the new netstandard

2.0 MigFx Libraries.

Update project references
Update all references in the Visual Studio engine projects to reference the migFx.Libraries. You can update in Visual Studio Solution Explorer by deleting the old references and

re-adding the correct references to the new libraris.

Or you can manually edit the csproj files as illustrated in the following sections.

For the Microsoft EntityFramework, you can reference the Nuget package provided by Microsoft, or you can reference the EntityFramework libraries provided with the migFx

Libraries.

8

Target Engine projects

9

SourceEngineGenerated projects

OBS: You also need to add Nuget package System.Data.SqlClient

SourceEngineCustom projects

10

Utility

The MigFx.Utility command line tool is used for validation of Translation Valuesets entries in the Tracker. The tools extracts the Translation Valuesets to a file that can be used

for external validation and, as a second step, the tool can read a file with validation results and mark the Translation Valueset entries in the Tracker with any validation errors.

Due to the change of the Command Line Parser used by MigFx, the format of the MigFx.Utility command line has changed. Please update all calls to MigFx.Utility accordingly.

Previous command line format:
MigFx.Utility translation -action=export -trackID=(track Guid) -path=(foldername) -file=(filename)

MigFx.Utility translation -action=import -trackID=(track Guid) -path=(foldername) -file=(filename)

MigFx.Utility translation -action=backup -trackID=(track Guid)

New command line format:
MigFx.Utility translation --action export --trackID (track Guid) --path (foldername) --file (filename)

MigFx.Utility translation --action import --trackID (track Guid) --path (foldername) --file (filename)

MigFx.Utility translation --action backup --trackID (track Guid)

Changes

• Option names must be prefixed with -- (2 dashes)

• Replace any = (equal sign) or : (colon) between option name and option value with a single space

Extension projects

Please update any extension projects, for instance custom unloaders and dataservices implementations, to target minimum .NET Framework 4.7.2 and to reference the new

migFx Libraries as outlined above.

If you have implemented any DataServices extensions that plug into the Studio and Director Runtime, you need to port your installer from the current Visual Studio Installer

vdproject type to a WIX installer project. This includes porting the install custom action as well.

11

Please contact hopp for assistance to port DataServices extension installers.

Excel Utilities
The MigExcelReader and MigExcelWriter utility classes have moved.

They used to be in the MigFx.DataServices.Public.dll library and the MigFx.DataServices namespace.

They have moved to a new MigFx.ExcelUtilities.Public.dll library and the MigFx.Excel namespace.

Please update any extensions using the MigFx Excel utility classes accordingly.

